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Abstract. An interpretation of the transport and magnetic relaxation properties of underdoped
cuprates based on the recently proposed U(1)×SU(2)Chern–Simons gauge field theory is proposed,
which takes into account the short-range antiferromagnetic order. The interplay of the doping-
dependent spin-gap (explicitly derived by us) effect and dissipation due to gauge fluctuations
gives rise to a crossover from metallic to insulating behaviour of the conductivity as temperature
decreases, in semi-quantitative agreement with experimental data. For the same reason the magnetic
relaxation rate shows a maximum nearby. Various crossover temperatures related to spin-gap effects
are shown to be different manifestations of the same energy scale.

Achieving an understanding of the anomalous normal-state properties of oxide superconductors
has been a challenge for theorists since their discovery [1]. Recently, a great deal of attention
has been focused on underdoped superconductors [2–5], for which pseudogap (spin-gap)
effects are fundamental. We will concentrate on the doping range where the short-range
antiferromagnetic order (SRAFO) exists [6], and propose an interpretation of the transport and
magnetic relaxation properties in this region, based on the recently proposed U(1) × SU(2)
gauge field theory [7].

The linear temperature dependence of the resistivity in most oxide superconductors over
a wide range of temperature is well established and a number of explanations have been
proposed [8] including the U(1) gauge field theory [9]. On the other hand, in underdoped
samples, a resistivity minimum and a crossover from metallic to insulating behaviour have been
observed [10–12]. A similar divergence of the resistivity at low temperatures has been found
in superconducting samples in strong magnetic fields [13], suppressing the superconductivity.
An apparently ‘obvious’ explanation of these two related phenomena would be localization
of charge carriers in two dimensions. However, a more careful comparison of theory with
experiments shows [14] that the localization effects including carrier interactions cannot
correctly interpret the data. Several other explanations have been proposed based on non-
Fermi-liquid (FL) behaviour of charge carriers [15–17], but the zero-field experiments [10–12]
have not been addressed, except for in [17] where a gauge field approach was used. We, instead,
will concentrate on the latter case. We will show that the presence of SRAFO, leading to a
finite mass of spinons (bosons), is the correct starting point in this doping range. The self-
generated U(1) holon–spinon (h/s) gauge field becomes singular due to coupling with holons
(fermions) [9], which, in turn, renormalizes the massive spinons in a nontrivial way. At low
temperatures, effects due to finite spinon mass prevail, leading to insulating behaviour, while
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at higher temperatures the dissipation caused by the gauge field dominates and gives rise to
metallic behaviour. For similar reasons, the spin relaxation rate is low at both low and high
temperatures, reaching a maximum near the resistivity crossover point, which is also consistent
with experiment [18].

Following a strategy previously applied to the 1D t–J model which reproduced there the
known exact Bethe ansatz results [19], the Chern–Simons bosonization with the U(1)×SU(2)
gauge field [20] was applied to the 2-D t–J model in the limit t � J , allowing us to rewrite
the partition function (and the correlation functions) in terms of a spin- 1

2 fermion field ψα ,
α = 1, 2, minimally coupled to a U(1) field B (gauging global charge), and an SU(2) field V

(gauging global spin) whose dynamics is given by a Chern–Simons action [7]. We decomposed
the fermion field ψα into a product of a spinless fermion field H (holons) and a spin- 1

2 boson
field �α (spinons), satisfying the constraint �∗

α�α = 1, thus introducing a local U(1) gauge
invariance called h/s. We proved the existence of an upper bound of the partition function for
holons in a spinon background, and we found the optimal spinon configuration (an s + i d-
like RVB state) saturating the upper bound on average. On neglecting the feedback of holon
fluctuations to field B and spinon fluctuations to field V , the holon field is a fermion one and
the spinon field is a hard-core-boson one. Within this approximation, the ‘mean field’ (MF)
B̄ produces a π -flux phase for holons, converting them into Dirac-like fermions, while the
V̄ -field, taking into account the feedback of holons, produces a gap for spinons vanishing in
the zero-doping limit.

The continuum action for AF fluctuations around the ‘MF’, described by a spin- 1
2 boson

field zα , α = 1, 2 (still ‘spinons’), is given by [7]

Ss = g−1
∫

dx0 d2x [v−2
s |(∂0 − A0)z|2 − |(∂µ − Aµ)z|2 + m2

s z
∗
αzα] (1)

where A is the h/s gauge field, g = 8/J , and vs = √
2Ja, with a the lattice constant.

The spinon ‘mass’ term m2
s ∼ 〈V̄ 2〉 ∼ −δ ln δ (the main new feature) is due to averaged

perturbation caused by holons of concentration δ via V̄ . This explicit doping dependence was
derived, rather than assumed in the theory. It produces a SRAFO, with correlation length
ξAF ∼ (−δ ln δ)−1/2, fully consistent with the neutron scattering data [21].

Neglecting the gauge fluctuations, holons are described by FL theory with a Fermi surface
(FS) consisting of four ‘half-pockets’ centred at (±π/2,±π/2). The MF B̄ turns the spinless
fermion H into two species of two-component Dirac fermions ψ(r), r = 1, 2, each of them
being supported on one Néel sublattice. The continuum action for these fermions is given
by [7]

Sh =
∫

dx0 d2x
∑
r

ψ̄ (r)[γ 0(∂0 − erA0 − δ) + t (∂/ − erA/)]ψ
(r) (2)

where A/ = γµAµ, ∂/ = γµ∂µ, γ0 = σz, γµ = (σy, σx), the charges er = ±1 depending on the
sublattice. After integrating out the gapful Dirac modes, we end up with a FL-like system of
holons with Fermi energy εF ∼ tδ, interacting through gauge field A.

As shown in [22], for the gauge field model the in-plane resistivity is approximately
given by

R = lim
ω→0

ω[(Im &⊥
s (ω))−1 + (Im &⊥

h (ω))−1] (3)

where &⊥
s and &⊥

h denote the transverse polarization bubbles (at �q = 0) due to the h/s
currents of holons and spinons, renormalized by gauge fluctuations. The A-propagator for
small |�q|, ω, ω/|�q| in the Coulomb gauge is given by [9, 23]

〈A⊥
µA

⊥
ν 〉(q, ω) ∼ (iωλh(�q) + χ |�q|2)−1 〈A0A0〉(q, ω) ∼ (νh + ωp)

−1 (4)
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whereλh ∼ κ/|�q|, κ ∼ O(δ) is the Landau damping due to the finite FS for holons, χ = χh+χs ,
χh ∼ m−1

h ∼ O(δ−1), χs = vsm
−1
s ∼ O((−δ ln δ)−1/2) is the diamagnetic susceptibility, νh is

the holon density at the FS, and ωp is the plasmon gap.
An estimate of the holon contribution to the resistivity can be derived as in [9]:

Rh ∼ δ

[
1

εF τimp

+

(
T

εF

)4/3]
(5)

where τimp is the transport relaxation time due to impurities.
To estimate the spinon contribution, we derive the large-scale behaviour of the spinon

current jµ = z∗Dµ

Az correlation function, where D
µ

A = ∂µ − Aµ, by eikonal approximation
[24], strictly preserving gauge invariance. We use spinon Green functions at zero temperature,
as is partially justified by the spinon gap, but we retain the temperature dependence of the
gauge fluctuations.

We apply the Fradkin representation [24] to the spinon propagator

〈z(x)z∗(y)〉 = G(x, y|A).

It can be derived using a first-quantized path integral form of the propagator, with metric (−++),
replacing integration over trajectories qµ(t) by integration over 3-velocities φµ = q̇µ(t),
µ = 0, 1, 2. Rescaling x0 to vsx0 one obtains

G(x, y|A) = i
∫ ∞

0
ds e−ism2

[eis(∂µ−Aµ)
2
](x, y)

∼ i
∫ ∞

0
ds e−ism2

∫
Dφµ(t) exp

(
i

4

∫ s

0
φ2
µ(t) dt

)
exp

(
i
∫ s

0
Ãµ(t)φ

µ(t) dt

)

×
∫

d3p exp

(
ipµ

[
xµ − yµ −

∫ s

0
φµ(t) dt

])
. (6)

Using an identity (equation (41) from the second paper of [24]), the integral∫ s

0
Ãµφ

µ(t) dt with Ãµ = Aµ

(
x +

∫ t

0
φ(t ′) dt ′

)

can be decomposed into a sum of an integral along a straight line (denoted by
∫ y

x
A) and a

gauge-invariant part depending on the field strength Fµν . Thus

G(x, y|A) = exp

{
− i

∫ y

x

A

}
G(x, y|F).

The spinon current-density correlation 〈jµ(x)jµ(y)〉, µ = 1, 2, is approximately given by
〈Dµ

A(x)G(x, y|A)D
µ

A(y)G(x, y|−A)〉, where 〈·〉 denotes averaging w.r.t. A. The gauge-
dependent terms of the two spinon propagators exactly cancel each other, yielding a strictly
gauge-invariant result, at large scale given approximately by〈

∂

∂xµ

G(x, y|F)
∂

∂yµ

G(x, y|−F)

〉
.

The A⊥-average involves contributions weighted by the ‘magnetic field’ correlations
〈Fµν(z)Fρσ (w)〉, µ, ν, ρ, σ = 1, 2, approximately evaluated for |z0 − w0| � T −1 as in
references [9, 23], giving (δµρδνσ − δµσ δνρ)(4T/χ)e−|�z− �w|2q2

0 q2
0 , where q0 = (κ/[χβ])1/3 is

a momentum cut-off related to the anomalous skin effect due to the Reizer singularity in
the A⊥-propagator [9]. The A0-average involves contributions weighted by ‘electric field’
correlations 〈F0µ(z)F0ν(w)〉, µ, ν = 1, 2. Since they vanish in the limit q, ω ∼ 0 (see (4)),
their contributions will be neglected.
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The integrals in (6) can be approximately calculated for relatively low temperatures
(T < χm2

s ) and the current–current correlation becomes

〈jµ(x)jµ(0)〉 ∼
[

∂

∂xµ

exp

(
−i(x2

0 − |�x|2)1/2

[
m2 − T

χ
f (|�x|q0/2)

]1/2

− T q2
0

4χ

g(|�x|q0/2)

m2
(x2

0 − |�x|2)
)
(x2

0 − |�x|2)−1/2

]2

(7)

where, for a real argument, f is monotonically increasing, and vanishing at zero argument, and
g is monotonically decreasing, and vanishing at large arguments. Their explicit expressions are
lengthy and will be given elsewhere [25]. In deriving the spinon current correlation at �q = 0 we
carry out the �x-integration by saddle-point methods. For x0 � q−1

0 the integral is dominated
by a complex saddle point at |�x| = 2q−1

0 α(x0), with finite α(x0) (in the first quadrant), having
a weak dependence on x0. To justify the saddle-point approximation we need to assume that
T > χmsq0. It turns out that in the physical range of parameters considered in this letter, this
and the above conditions are both satisfied for temperatures between tens of and a few hundred
degrees.

Let us define

&+(ω) =
∫ ∞

0
dx0 〈jµjµ〉(�q = 0, x0)e

ix0ω.

Using the Lehmann representation we find

lim
ω→0

Im &⊥(ω)ω−1 = −2
∂

∂ω
Re &+(0).

Noting that the main contribution comes from small x0, introducing a lower cut-off, and per-
forming scale renormalization, we obtain for the ω → 0 limit

∂ Re &+(ω)

∂ω
∼ Re

[
(α(0))3(q0)

3/2Z1/4(if ′′)−1/2

(
T

χ

)−1/2

(ω − Z1/2)−1

]

where

Z = |Z|e−iθ ≡ m2 − T

χ
f (α(0)) f ′′ ≡ f ′′(α(0)) (8)

(renormalization eliminates the contribution of the g-function, being subleading). We find that
at large x0, argα(0) = π/4 and arg f ′′(α(0)) = 0. We extrapolate α(x0) to α(0), retaining
these features. In this way we recover the correct behaviour, R → ∞, as T → 0. As x0 → 0,
the saddle point extrapolates to xs ∼ q−1

0 eiπ/4, and we find the ‘spinon contribution’ to the
resistivity:

Rs = 2−4

( |f ′′|
κ

)1/2

|α(0)|−3 |Z|1/4

sin(θ/4)
. (9)

In figure 1 our calculated resistivity (the sum of (5) and (9)) is plotted as a function of
temperature for various dopings in comparison with experimental data taken for LSCO [10]
(inset). We have taken t/J = 3, J = 0.1 eV. Apart from the resistivity scale, there are no other
adjustable parameters (similarly for figure 2—see later). We find a resistivity minimum below
100 K in very good agreement with experiment. We see from (8) that the imaginary part of Z
is proportional to temperature T . At low temperatures the spin-gap effect (∼ms) dominates,
θ → 0, so the system shows an insulating behaviour. (The functional dependence R ∼ 1/T ,
different from the ‘standard’ exponential law due to the spin gap, is a prediction of our theory.)
In contrast, at higher temperatures the imaginary and real parts of Z become comparable, so the
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Figure 1. The calculated temperature dependence of the in-plane resistivity (the sum of expressions
(5) and (9)) for various dopings δ in comparison with the corresponding experimental data (inset)
for La2−δSrδCuO4 in units of m< cm, taken from [10].

resistivity grows with temperature due to gauge fluctuations via |Z|. Moreover, the minimum
shifts to higher temperatures, as the doping decreases, also in agreement with experiment (our
theoretical prediction m2

s ∼ −δ ln δ, rather than ∼δ, is responsible for this shift). We have also
compared the calculated conductivity on the semi-logarithmic scale with data taken for a very
good single crystal of La1.96Sr0.04CuO4 (inset) [6,11]. We find a symmetric shape of the curve
around the maximum, and an inflection point as well as a linear piece on the low-temperature
side in both theory and experiment. So far we have not included the external magnetic field.
We believe that the experimentally observed crossover from metallic to insulating behaviour
in strong magnetic fields when superconductivity is suppressed [13] can be understood in a
similar way, and this issue will be addressed in our future communication [25].

Now turn to the spin–lattice relaxation rate T −1
1 which can be expressed approximately

as [18]

(T1T )−1 ∼ lim
ω→0

∫
d2q F(�q) Im χs(�q, ω)

ω

where χs is the spin susceptibility and F(�q) is the form factor. To evaluate χs we use the
representation for the spin deduced for large scales:

�Sx ∼ eiπ |x|z∗ �σz(x)(1 − ρh(x))

where ρh is the holon density, to be replaced by its average δ. Around the AF wave vector
�QAF = (π, π) we find that

〈�S(x) · �S(0)〉 ∼ (1 − δ)2eiπ |�x|〈G(x, 0|F)G(x, 0|−F)〉
which can be calculated as before. Defining

χ+(�q, ω) =
∫ ∞

0
dx0 〈�S · �S〉(�q, x0)e

ix0ω
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using the Lehmann representation and taking into account that F(q) is even in �q, one obtains

(T1T )−1 = −2
∫

d2q F(�q)∂ Re χ+(�q, ω = 0)

∂ω
.

Since F(�q) is peaked around �QAF for Cu, integrating over q in a small region around that
point, and introducing a cut-off in the real space = ∼ π/|xs |, we find

(T1T )−1 ∼ (1 − δ)2
√
δ|Z|−1/4

(
a cos

(
θ

4

)
+ b sin

(
θ

4

))
(10)

where

a = Re
∫
=

d2y J0(2|�y|α(0)) b = −Im
∫
=

d2y J0(2|�y|α(0))
and J0 is the zero-order Bessel function.

In figure 2 we plot our calculated spin–lattice relaxation rate (T1T )−1 for 63Cu as a
function of temperature for various dopings in comparison with experimental data taken for
underdoped samples of YBCO [18]. We observe a maximum near the crossover temperature
for conductivity, although the shape around the maximum is not symmetric any longer, due to
the presence of the cosine term.
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Figure 2. The temperature dependence of the calculated spin–lattice relaxation rate (T1T )−1 given
by (10). Inset: 63(T1T )−1 in the CuO2 planes of YBa2Cu3O6.52 single crystals in units of s−1 K−1,
taken from [18].

To summarize, we have shown using the U(1)× SU(2) gauge field theory that the metal–
insulator behaviour crossover and peculiar behaviour of the NMR relaxation in underdoped
cuprates might be due to the interplay of the spin-gap (derived in our approach) effect and gauge
field fluctuations. More precisely, the crossover takes place when the real and imaginary parts
of Z (equation (8)) become comparable. In figure 3 we have plotted three different crossover
temperatures related to the spin-gap effects, namely the metal–insulator crossover TM−I (the
minimum of the in-plane resistivity), and the spin-gap crossover temperatures, detected by
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Figure 3. The calculated metal–insulator crossover temperature TM−I , the inflection point T0 in
the NMR (T1T )−1, and the inflection point T ∗ of R as functions of doping.

means of NMR (T0) and by means of resistivity (T ∗), identified with their respective inflection
points, in the low-doping region (δ ∼ 0.02–0.08). The latter two temperatures, roughly
speaking, limit from above the region of significant spin-gap effects and validity of our
approximation. These crossover temperatures are different manifestations of the same energy
scale. The fact that their relative order T ∗ > T0 > TM−I , as well as their order of magnitude,
agrees with experiments provides further support for our approach.
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